
A Simple Training Strategy for Graph Autoencoder
Yingfeng Wang

Middle Georgia State University
100 University Parkway
Macon, Georgia, USA

1-478-471-2477
yingfeng.wang@mga.edu

Biyun Xu
Beijing Kubao Technology Company

1089 Huihe South Street
Chaoyang, Beijing, China

86-17601230404
xu.biyun@foxmail.com

Myungjae Kwak
Middle Georgia State University

100 University Parkway
Macon, Georgia, USA

1-478-757-6682
myungjae.kwak@mga.edu

Xiaoqin Zeng
Hohai University
1 Xikang Road

Nanjing, Jiangsu, China
xzeng@hhu.edu.cn

ABSTRACT
Graph autoencoder can map graph data into a low-dimensional
space. It is a powerful graph embedding method applied in graph
analytics to reduce the computational cost. The training algorithm
of a graph autoencoder searches the weight setting for preserving
most graph information of the graph data with reduced
dimensionality. This paper presents a simple training strategy,
which can improve the training performance without significantly
increasing time complexity. This strategy can flexibly fit many
existing training algorithms. The experimental results confirm the
effectiveness of this strategy.

CCS Concepts
• Computing methodologies ➝ Machine learning ➝ Machine
learning approaches ➝ Neural networks

Keywords
Keywords: Autoencoder; Graph Convolutional Network;
Perturbation; Training Algorithm.

1. INTRODUCTION
Autoencoder is a neural network composed of encoder and
decoder. Encoder converts the input data into an abstract
representation, while decoder reconstructs the original input data
from the output of encoder. Graph autoencoder is based on graph
neural network, whose input data is graph information. Because
graph autoencoder has shown great potential in dimensionality
reduction, it has been drawing more and more attention in graph
embedding [1].

Graph autoencoder embeds graph data based on matrix
factorization [1, 16]. It aims to preserve the graph structure of the

input matrix, e.g., adjacency matrix, in a low-dimensional space
by matrix factorization [25]. The effectiveness of an autoencoder
depend on the effectiveness of its training algorithm, which
minimizes the loss between the input data and the reconstructed
data. The traditional autoencoders are based on traditional neural
networks. Their training algorithms have been studied for decades
[8]. However, graph neural network is relatively new [17]. It
motivates researchers to invest substantial efforts in developing
training algorithms of graph neural network for addressing
different issues [3, 7, 13, 23, 25, 26]. These efforts also benefit the
training algorithm design for graph autoencoder.

Most existing graph autoencoders use deep models or
convolutional networks. The deep learning method was first
implemented in a graph autoencoder named SDNE [21]. This
autoencoder focuses on the proximity of a simple graph composed
of vertexes and edges. It uses the first order and second order of
proximity to describe pairwise vertex proximity and pairwise
neighborhood structure proximity, respectively. The training
algorithm of SDNE is semi-supervised. Tu et al. also applied deep
learning in their graph autoencoder DRNE [18]. This autoencoder
uses multilayer perceptron (MLP), a feedforward neural network,
while its whole model is recursive. DRNE uses Adam training
algorithm [9]. Cao et al. applied deep learning in a denoising
graph autoencoder called DNGR [2]. A denoising autoencoder
used corrupted input in the training, while the expected output of
decoder is the original input [19]. This training algorithm aims to
enable the trained autoencoder to automatically filter out noise.
Yu et al. used deep learning to develop an adversarially
regularized autoencoder named NetRA [24]. Its adversarial
training platform is composed of generator and discriminator [6].
Generator generates faked encoded representations, while
discriminator attempts to distinguish faked representations from
real output of encoder. This algorithm is good at reducing
autoencoder learning failures caused by too much capacity of
encoder and decoder. Graph convolutional network (GCN) [11] is
also very popular in graph autoencoders. Kipf and Welling
introduced a variational graph autoencoder (VGAE) and its non-
probabilistic variant, GAE, based on a two-layer GCN [12]. The
encoder of a variational autoencoder is a generative model, which
learns the distribution of training samples [10]. Wang et al.
presented a marginalized graph autoencoder (MGAE), which is
also based on GCN [20]. The training algorithm of MGAE
marginalizes the corrupted input and optimizes the autoencoder to
reconstruct the original input. Based on VGAE and GAE, Pan et

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ICMLC 2020,

February 15–17, 2020, Shenzhen, China

©

2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7642-6/20/02…$15.00

DOI: https://doi.org/10.1145/3383972.3383985

341

al. proposed an adversarially regularized autoencoder ARVGE
and its variant ARGE [16].

The training algorithm is a key component of a graph
autoencoder. Researchers have designed different training
algorithms for above graph autoencoders. This paper proposes a
simple training strategy, which can be applied in many existing
training algorithms. Here, we focus on using this strategy in GCN
based autoencoders.

The rest of this paper is organized as follows. Section 2 introduces
the basic architecture of a GCN based autoencoder model. The
details of the proposed training strategy are provided in section 3.
Experimental results are presented in section 4. Section 5
concluded the paper.

2. THE GCN BASED AUTOENCODER
MODEL
A graph autoencoder is composed of an encoder and a decoder.
The upper part of Figure 1 is a diagram of a general graph
autoencoder. The input graph data is encoded by the encoder. The
output of encoder is the input of decoder. Decoder can reconstruct
the original input graph data. Kipf and Welling proposed a GCN-
based autoencoder model [12]. This diagram of this model is
given in the lower part of Figure 1. The encoder in this model is a
GCN. The input graph data can be represented by (A, X), where A
is the adjacency matrix, while X is the node feature matrix. If the
number of nodes is n, A is a 𝑛 × 𝑛 matrix. It is worth noting that
all diagonal elements of A are set to one. If the number of features
is m, X is a 𝑛 × 𝑚 matrix. We can build the 𝑛 × 𝑛 degree matrix
D based on A by the following expression.

𝐷%& = (∑ 𝐴%+,
+-. , 𝑖𝑓	𝑖 = 𝑗
0, 𝑖𝑓	𝑖¹𝑗 , (1)

where 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Assume the GCN used in the encoder has k
layers. The output of the lth layer of GCN, represented by 𝑍(9),
can be computed by the following formula.

𝑍(9) = 𝑓(9)(𝐷;
<
=𝐴𝐷;

<
=𝑍(9;.)𝑊(9)), (2)

where 1 ≤ 𝑙 ≤ 𝑘, 𝑍A = 𝑋, 𝑓(9) is the activation function of the
lth layer, 𝑊(9) is the weight matrix of the lth layer, and 𝐷;

<
= can

be calculated by the following expression.

											𝐷%&
;<= = C𝐷%%

;<=, 𝑖𝑓	𝑖 = 𝑗
0, 𝑖𝑓	𝑖¹𝑗

 (3)

The training algorithm adjusts the weight parameters of all layers.
In GAE VGAE, ARGE, and ARVGE, the two-layer GCN of the
encoder uses the following Relu activation function for the first
layer.

𝑓DE9F(𝑡) = max	(0, 𝑡) (4)
And the following linear function is used for the second layer.

𝑓9%,EKL(𝑡) = 𝑡 (5)
We represent the output of the encoder by Z. In GAE and ARGE,

𝑍 = 𝑍(M), (6)
while in VGAE and ARVGE, the output of the encoder is
calculated by the following expression.

𝑍 = 𝑍(M) + 𝑁,×LP0,𝐸𝑥𝑝(𝑍(M))T, (7)

where r is the number of units in hidden layer 2, Exp(•) element-
wisely computes the natural exponential of the input matrix, and
𝑁,×L(0,•) returns an 𝑛 × 𝑟 matrix filled with random values with
(0, •) normal distribution.

The input of the decoder is Z, the output of the encoder. Here, we
focus on reconstructing the adjacency matrix, A. The
reconstructed adjacency matrix is denoted by 𝐴′ and can be
computed by the following formula.

𝐴′ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍𝑍[), (8)
where 𝑍[is the transpose matrix of Z and the details of
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(•) are given as follows.

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡) = .
.\E]^

 (9)

Figure 1. The upper part is the diagram of a general graph autoencoder. The lower part is the diagram of a GCN based graph

autoencoder proposed by Kipf and Welling [12].

342

3. TRAINING STRATEGY
One goal of autoencoder training is to minimize the generalization
error, which reflects the generalization ability of an autoencoder.
It is reasonable to assume that the training set can represent the
whole input space. We propose a simple training strategy to create
new training samples based on the existing training set by adding
perturbation to original training samples.

As for a given training sample, its adjacency matrix is filled with
one and zero. If an element is one, it suggests the corresponding
pair of nodes are connected by an edge. Similarly, zero indicates
the corresponding pair of nodes are not connected. Note that we
only focus on the edges between different nodes, so the elements
of the diagonal of the adjacency matrix are ignored. Here, we
design a training strategy for sparse adjacency matrixes, while this
strategy can also be adjusted for dense adjacency matrix. We set a
small perturbation rate denoted by p. If there are totally u edges in
an original training sample, ⌊pu⌋ elements of the adjacency matrix
will be randomly picked for value change from one to zero, where
⌊•⌋ is the floor function. Similarly, ⌊pu⌋ elements with original
value zero will also be randomly selected for changing values to
one. In the training, we feed perturbed training samples instead of
the original samples to the training algorithm. This strategy is
summarized as follows.

Training Strategy (perturbation rate 𝑝, 0 < 𝑝 ≪ 1):
For each iteration:
 randomly remove edges with rate 𝑝;
 randomly add new edges with rate 𝑝;
 feed the perturbed sample to the original training
algorithm.
End For

The working flow of this strategy is provided in Figure 2.

Figure 2. The working flow of the proposed training strategy.

In the unsupervised learning framework of autoencoder, the
training algorithm can use the input as expected output. Based on
this property, our training strategy generates “new” samples to
avoid the overfitting problem. This strategy only updates the
training samples, so it can flexibly fit many existing training
algorithms. Different from denoising training algorithms, in which
the expected output is the original input, our strategy also uses the
perturbed samples as expected output of decoder. Based on our
strategy, original samples are replaced by perturbed samples in the
training. The number of samples processed by the training
algorithm is the same. Therefore, the computational cost of
training algorithm does not significantly increase. The original
training algorithm is the special case of our strategy with
perturbation rate zero.

4. EXPERIMENTS

Table 1. The information of data sets used in experiments

 Cora CiteSeer
The number of Nodes 2708 3327
The number of edges 5429 4732

The number of Features 1433 3703

Table 2. Results for Link Prediction on Cora. GAE, VGAE,
ARGE, and ARVGE are original methods, while GAE+,
VGAE+, ARGE+, and ARVGE+ are the corresponding

methods with the proposed strategy.

Method AUC AP

GAE 91.0 ± 0.01 92.1 ± 0.01

GAE+ 91.2 ± 0.01 92.4 ± 0.01

GVAE 91.8 ± 0.01 92.8 ± 0.01

GVAE+ 92.1 ± 0.01 92.9 ± 0.01

ARGE 88.6 ± 0.01 90.5 ± 0.01

ARGE+ 90.4 ± 0.01 91.9 ± 0.01

ARVGE 90.6 ± 0.01 92.2 ± 0.01

ARVGE+ 90.9 ± 0.01 92.4 ± 0.01

To verify the effectiveness of our strategy, we conduct
experiments of link prediction on two data sets: Cora [15] and
CiteSeer [5]. The information of these two data sets are given in
Table 1 [12, 16]. Both data sets were used for testing [12, 16]. Our
experiments test GAE, VGAE, ARGE, and ARVGE, four GCN
based autoencoder, with and without using our strategy. We
follow the same setting used in experiments of [12]. In each data
set, 5% connected node pairs and 5% non-connected node pairs
are randomly picked for the validation set. Similarly, 10%
connected node pairs and 10% non-connected node pairs are
randomly picked for the test set. The rest is used for the training
set. The learning rate is 0.01. Each time, the training uses Adam
algorithm [9] and takes 200 iterations. In practice, the proposed
strategy uses the original training sample in the last iteration and
newly generated samples in other iterations. The dimensions of
the first and second layer are 32 and 16, respectively. As for other
parameters, we use the default setting of each method.

343

Table 3. Results for Link Prediction on CiteSeer. GAE,
VGAE, ARGE, and ARVGE are original methods, while

GAE+, VGAE+, ARGE+, and ARVGE+ are the
corresponding methods with the proposed strategy.

Method AUC AP

GAE 89.2 ± 0.02 89.9 ± 0.01

GAE+ 90.1 ± 0.01 90.6 ± 0.01

GVAE 90.7 ± 0.01 92.0 ± 0.01

GVAE+ 91.0 ± 0.01 92.4 ± 0.01

ARGE 84.8 ± 0.02 87.1 ± 0.01

ARGE+ 87.2 ± 0.01 88.9 ± 0.01

ARVGE 88.3 ± 0.01 90.0 ± 0.01

ARVGE+ 90.3 ± 0.01 91.6 ± 0.01

The experiments apply area under the ROC curve (AUC) and
average precision (AP) scores [4, 14, 22] to measure performance.
As for each method, we repeatedly train ten times on either data
set. In order to easily reproduce training results, random seed of
the ith time is set to i. We report average scores and related
standard deviations.

The experimental results on Cora are given in Table 2. These
results show the proposed strategy consistently improves the
performance of each method on Cora. The experimental results on
CiteSeer are given in Table 3. The proposed strategy also
consistently improves the performance of each method on
CiteSeer. The consistent advantage of our strategy on all methods
and both data set confirms the effectiveness of this strategy.

5. CONCLUSION
This paper proposes a simple training strategy for graph
autoencoder. It generates new training samples by adding random
noise to original sample. This strategy can be applied in most
existing training algorithms. The experimental results show this
strategy improves the performance. Furthermore, our strategy also
provides a new way to avoid the overfitting problem.

6. ACKNOWLEGEMENTS
This work was partially supported by the National Science
Foundation under grant number 1813252.

7. REFERENCES
[1] Cai, H. et al. 2018. A comprehensive survey of graph

embedding: Problems, techniques, and applications. IEEE
Transactions on Knowledge and Data Engineering. 30, 9
(2018), 1616–1637.
DOI:https://doi.org/10.1109/TKDE.2018.2807452.

[2] Cao, S. et al. 2016. Deep neural networks for learning graph
representations. Proceedings of 30th AAAI Conference on
Artificial Intelligence (2016), 1145–1152.

[3] Duvenaud, D. et al. 2015. Convolutional networks on graphs
for learning molecular fingerprints. Proceedings of the 28th
International Conference on Neural Information Processing
Systems (2015), 2224–2232.

[4] Fawcett, T. 2006. An introduction to ROC analysis. Pattern
Recognition Letters. 27, 8 (2006), 861–874.
DOI:https://doi.org/https://doi.org/10.1016/j.patrec.2005.10.0

10.
[5] Giles, C.L. et al. 1998. CiteSeer: An automatic citation

indexing system. Proceedings of the ACM International
Conference on Digital Libraries. (1998), 89–98.

[6] Goodfellow, I. et al. 2014. Generative adversarial nets.
Advances in Neural Information Processing Systems 27
(2014), 2672–2680.

[7] Goyal, P. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems. 151,
(2018), 78–94.
DOI:https://doi.org/https://doi.org/10.1016/j.knosys.2018.03.
022.

[8] Haykin, S. 2008. Neural networks and learning machines.
Pearson.

[9] Kingma, D.P. and Ba, J.L. 2015. Adam: A method for
stochastic optimization. Proceedings of the 3rd International
Conference on Learning Representations (2015).

[10] Kingma, D.P. and Welling, M. 2014. Auto-encoding
variational bayes. Proceedings of the 2nd International
Conference on Learning Representations (2014), 1–14.

[11] Kipf, T.N. and Welling, M. 2017. Semi-supervised
classification with graph convolutional Networks.
Proceedings of International Conference on Learning
Representations (2017), 1–13.

[12] Kipf, T.N. and Welling, M. 2016. Variational graph auto-
encoders. NIPS Workshop on Bayesian Deep Learning
(2016).

[13] Li, Y. et al. 2016. Gated Graph Sequence Neural Networks.
Proceedings of the International Conference on Learning
Representations (2016).

[14] McClish, D.K. 1989. Analyzing a portion of the ROC curve.
Medical Decision Making. 9, (1989), 190–195.
DOI:https://doi.org/https://doi.org/10.1177/0272989X890090
0307.

[15] McDowell, L.K. et al. 2009. Cautious collective
classification. Journal of Machine Learning Research. 10,
(2009), 2777–2836.

[16] Pan, S. et al. 2018. Adversarially regularized graph
autoencoder for graph embedding. Proceedings of the 27th
International Joint Conference on Artificial Intelligence.
(2018), 2609–2615.
DOI:https://doi.org/10.1523/JNEUROSCI.1317-08.2008.

[17] Scarselli, F. et al. 2009. The graph neural network model.
IEEE Transactions on Neural Networks. 20, 1 (2009), 61–80.
DOI:https://doi.org/10.1109/TNN.2008.2005605.

[18] Tu, K. et al. 2018. Deep recursive network embedding with
regular equivalence. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. (2018), 2357–2366.
DOI:https://doi.org/10.1145/3219819.3220068.

[19] Vincent, P. et al. 2008. Extracting and composing robust
features with denoising autoencoders. Proceedings of the
International Conference on Machine Learning (2008),
1096–1103.

[20] Wang, C. et al. 2017. MGAE: Marginalized graph
autoencoder for graph clustering. Proceedings of the
International Conference on Information and Knowledge
Management, Proceedings (2017), 889–898.

344

[21] Wang, D. et al. 2016. Structural deep network embedding.
Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2016), 1225–
1234.

[22] Wikipedia entry for the Receiver operating characteristic:
https://en.wikipedia.org/wiki/Receiver_operating_characteri
stic.

[23] Wu, Z. et al. 2019. A Comprehensive Survey on Graph
Neural Networks. arXiv preprint arXiv:1901.00596v2.
(2019).

[24] Yu, W. et al. 2018. Learning deep network representations
with adversarially. Proceedings of the International
Conference on Knowledge Discovery and Data Mining
(2018), 2663–2671.

[25] Zhang, D. et al. 2018. Network Representation Learning: A
Survey. IEEE Transactions on Big Data. (2018).
DOI:https://doi.org/10.1109/tbdata.2018.2850013.

[26] Zhou, J. et al. 2018. Graph neural networks: A review of
methods and applications. arXiv preprint
arXiv:1812.08434v3. (2018).

345

